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K'(T} - Tm) exp (-hzk/k') KTm exp (-1
erf kl/2 erfc h

(10)

Here K is the conductivity, k the diffusivity, L the latent heat of
fusion, primed quantities refer to the thermal constants of the
molten solid, and the constant h is the root of the transcendental
equation (10). If we introduce dimensionless coordinates £ =
cx/4h2k and r = c2t/4:h2k, then the boundary curve becomes
£ = r1/2, and the characteristic that separates regions RI and R%
becomes £ = r + 1/4. The steps outlined in Eqs. (6) to (8) may
now be carried out. The result is as follows:

<r* = - 1/zpicTM( erfc h)~l [exp h\r - £)-erfc /K£r~1/2 - 2r1/2) +

exp h\r + £).erfc/K£r-1 / 2 + 2r1/2)] for 0 < r < 1/4, £ > r1/2

and for r > V4, £ > T + V* (11)

- £)• [erfc /*(2r1/2 - £r~1/2) -

erfc h Vl - 4(£ - r)] + exp h2(r - £ + 1 +

Vl -4(£ - T j ) -erfcA(2 + Vl - 4(£ - r)) - exp fc2 (r - £)

erfc/K£r-1/2 +2r1/2)} for r > V4, r1/2 < £

< r + 1/4 (12)

The jump in the value of stress which propagates with velocity c
is given by

exp (3/*2/4)- (13)
We note that this discontinuity in the value of stress increases
with increasing h. The same effect is present in the expressions
for ax as given in Eqs. (11) and (12). For a given material the
coefficient px.Tm that appears in Eqs. (11) to (13) is a constant,
whereas from Eq. (10) h increases as 7\ increases. This clearly
demonstrates that under these circumstances the effect of inertia
becomes important for all time, and its neglect is not justified.
It may easily be verified that the quasi-static solution of the
problem is given by e = KC~2T, ax = 0, and ay = <r0 = —pK.T.
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Interface Stability in a Nonuniform
Acceleration Field
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THE STABILITY of two fluids separated by an initially plane
interface and subject to a constant, normal acceleration field

was considered by Taylor.1 Corrections were introduced later to
Taylor's analysis to account for the viscous and cohesive forces.2

The interface stability of two fluids in motion parallel to the
common interface in a normal constant gravitational field was
first studied by Helmholtz.3' 4

In some cases of practical importance the fluids are exposed to
the action of nonuniform body-force distributions. For example,
if a binary fluid with a distinguishable separation surface is in a
vortex-type motion, the radial variation of the azimuthal velocity
in the potential-flow region causes a spatially nonuniform
centripetal acceleration field on both sides of the interface. The
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inclusion of viscosity effects would increase this nonuniformity.
The question is: how does the acceleration-field distribution

affect the stability of the separation surface of two fluids?
The aim of this note is to show that the interface stability does

not depend upon the spatial distribution of the acceleration field;
the Helmholtz and Taylor stability criteria are directly applicable
if the direction and the magnitude of the acceleration at the inter-
face are known.

For brevity, only the invariance of the Taylor stability criterion
will be shown here. Similar considerations can be applied also to
Helmholtz's analysis.

GENERALIZATION OF TAYLOR'S ANALYSIS
For the notation and the model considered here the reader is

referred to Refs. 1 and 2.
The linearized equations describing the disturbed flow field are

•- 0
= 0

, , ^— + — — + g(y)dt p oy
0

(1)

and the interface is given by y = rj(x, /). Here, u and v are
velocity components generated by the initially small disturbances;
g(y) is an arbitrary function of the coordinate perpendicular to the
interface and it describes the body-force distribution throughout
the fluid masses.

The above equations can be satisfied by

f= po - P I
Jo

v =
>y

g(y)dy - P —( (2)

where po is the mean pressure at the interface. Let us assume now

<j>i = AI exp[ — ky -\-at-\- ik'x]
fa = A% exp[&;y -}- at -\- ik'x] (3)

where the subscripts 1, 2, refer to the upper and lower fluids, re-
spectively.

The condition of pressure continuity at the disturbed interface
yields the following expression :

- Pigi(y)]dy =

exp [<rt (4)

If the initial disturbance amplitude is small compared with the
wavelength, the time derivative of Eq. (4) can be written as

a*(A1Pl - A2P2~} exp [at -f ik'x] (5)

= giW = go (6)

But

where go is the magnitude of the body forces at the interface.
The condition of continuous velocity at the interface for small

initial-amplitude values yields

A, = -A, = -A (7)

If one applies now the kinematic surface condition5

(d?7/d/) + u(()r}/()x) = v (8)

and neglects the higher-order convective term,

T.A , *— c^— = -kA exp (at
dt dy (9)

The combination of Eqs. (5), (6), (7), and (9) yields an expression
for the damping factor a:

— Cl)/(p2 + Pi)] (10)

The result is identical with that obtained for a constant accelera-
tion field go-l

Thus, the stability of the interface depends upon the body forces
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acting at the interface, but it is not affected by the g-field dis-
tributions throughout the fluid masses.
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IT is KNOWN that the gradient of gravitational-attraction
forces generates a restoring couple on a satellite slightly dis-

placed in angular orientation from its equilibrium attitude.1

The positive restoring moment thus obtained provides a stabiliz-
ing influence in purely passive configurations, of interest in such
applications as communications reflectors. The weakness of the
gravity gradient, however, is equivalent to the use of a very soft
spring when displacements are small. This explains excessively
long periods of natural oscillation and consequent serious prob-
lems of attitude control. Detailed analysis reveals a slight
additional stabilizing couple due to inertia and permits appraisal
of response characteristics for a wide class of satellite configu-
rations.

An elementary vector identity suggests a compact representa-
tion of gravity torque by means of a vector potential

W = -Gf(i/R)dm

where G is the usual product of earth mass times universal gravi-
tational constant, r is position vector measured from center of
moments (which we take as satellite mass center) to a point of the
satellite, R is the distance from earth center to the same point,
and integration is carried out over all mass points of the satellite.
Gravitational torque moment is then given by the vector curl
operation as

Mo = V X W (1)

where nonzero terms originate only in the term R, which may be
written as

R* = (RQ + z)2 + x2 + y2

RQ being the distance of satellite mass center from earth center,
z is measured outward along the same radial, y is directed oppo-
sitely to orbital velocity, and x is such as to form a right-handed
Cartesian system. Since RQ is much greater than x, y, or z, the
moment Mo is given by

Mo = (3G/R0
3)[ifyzdm - }fxzdm\ (2)

i, j denoting unit vectors in oc, y directions (the same result easily
obtains by direct integration of elementary force moments
without use of potential W). When principal inertia axes are
displaced through infinitesimal angles a, /3, 7 about x, y, z axes
and corresponding inertia moments are denoted by A, B, C,
respectively, Eq. (2) is linearly approximated as

(3)

With B > C, A > C, both components have negative signs indicat-
ing restoring torques and static stability. These inequalities are
appropriate for elongated figures in the radial direction, for
which maximum gravity-gradient forces are realized. It is evi-
dent that 90° rotations interchange pairs of A, B, C values, and
consequent sign reversals indicate instabilities. Expressions (2)
or (3) determine the rate of change of total satellite moments of
momentum ; this has the form

+ + (7 - C)]i2

+ - B)]k (4)

when referred to principal-axis coordinates. Time derivatives
are indicated by dots and orbital angular velocity O is introduced,
given by

The separate components of Eqs. (4) reveal dynamic coupling
(18,7 terms) with orbital motion and centrifugal couples, stabiliz-
ing when A > C, A > B. Within present small angle approxima-
tions i = ii and j = i2, so that (3) and (4) together determine
orientation in space by means of three second-order scalar equa-
tions for a, |8 and 7. Thees equations exhibit the coupling of 0
and 7 motions in all cases except when the condition

A - B - C = 0 (5)

is satisfied, which is of much less physical interest than the case
of the prolate axially symmetric figure for which

A = B > C (6)

The a motion is in any case uncoupled from the other two modes
and is characterized by a natural frequency given by

corresponding to less than two cycles per orbit. The maximum
value occurs in the limit C — > 0, i.e., for configurations everywhere
close to the z-axis (for which signal reflection cross-section is also
most reduced). From the defining integrals of the moments of
inertia it is also seen that the frequency of a motion (oscillations
confined to orbital plane) is reduced for the asj^mmetric case
which does not conform to the equality in (6).

The coupled equations for /3 and 7 motion are

+ - B - C)y +

- B - C)jd +

- C)/3 = 0
- B)y = 0,

(8)

which bear a close resemblance to those for Foucault's pendu-
lum.2 This is natural, of course, since our configuration is also a
"pendulum," supported by orbital centrifugal force. As in
Foucault's case, the two motions are 90° out of phase with each
other. Differences appear when the final terms are compared:
two distinct frequencies are present in our case HA 7^ B, and this
again signifies reduction in values of natural frequencies. In no
case is the system frequency greater than twice the orbital value.

It is therefore seen, even when the centrifugal restoring couple
is included, that gravity-gradient passive satellite stability is at
best marginal. Large-amplitude displacements are thus invited
which lead directly to definite instability. This happens most
easily, moreover, for those elongation configurations which give
the best response when in their orientation of stable equilibrium.
The practical requirement for added system complexity is thus
shown.
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